PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Dynamics of postnucleation and domain growth: Domain-spatial correlation function
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Postnucleation and domain growth have been investigated by direct imaging of re&i-8ieobservation
in semicrystalline polymer films. The pattern evolution and spatiotemporal dynamics are conducted with the
domain-spatial correlation functio@(r,t), which we reported briefly in a previous stufighys. Rev. B8,
789 (1998)]. In this paper we present the general definition of the domain-spatial correlation function for
stochastic droplet systems and an interpretation for typical liquidlike and solidlike structures in physics sys-
tems. The application of the domain-spatial correlation function and an extensive analysis on simultaneous
nucleation, continuous nucleation, multiple nucleation, and growth processes have been reported with experi-
mental data. The domain-spatial correlation function directly yields the time-dependent domain-size distribu-
tion function and the spatial correlation function of domain core centers simultaneously throughout the entire
process, including the postnucleation, domain growth, and grain formation stages. The scaling relation
G(r/Ry(t))=G(r,t)/G(r=0}), whereRy(t) is the location of the first minimum d&(r,t), has been defined
and evaluated from experimental data. It is exact for free growth during the postnucleation stage and it also
provides a basis for the interpolation between the impingement stage and grain structures. Furthermore, we
indicate that the domain-spatial correlation function and the direct imaging program are useful tools and
suitable to characterize any static droplet patterns and dynamic processes in a wide range of scientific fields.
[S1063-651%98)09311-9

PACS numbe(s): 64.60.Qb, 64.70.Dv, 68.55a, 81.30-t

[. INTRODUCTION exact expression of the two-point correlation functions, pro-
vided the domain-size distribution is known, which is also
The domain growth and evolution of spatial structuresrelated to the crystallized fraction. Im dimensions, it was
have long received attention in various fields of sciencededuced by Ohtat al. [15] under certain restrictions. The
[1,2]. The domain growth associated with first-order non-evaluation of the correlation functions in this system has
equilibrium phase transformations occurs by spinodal deusually been performed by means of the time-core method.
composition or nucleation and growtf8,4]. Reasonable Axe and Yamadd416] obtained an expression of the grain
agreement between scattering experiments and theory fawutocorrelation function in the case of a one-dimensional
phase separation and ordering has been achieved for masystem and constant nucleation rate and growth velocity
different materials. In contrast, there are many unsolvedased on Kolmogorov's model. In this case, the universal
problems in nucleation growth. Although Kolmogorov, domain-size distribution is obtained for-0. However, due
Johnson, Mehl, and Avrami'®JMA's) [5] theory of nucle- to the lack of isotropy of the one-dimensional case, the re-
ation and growth predicts the time dependence for the results obtained cannot be generalized to higher dimensions.
acted fraction, it does not provide any information on theAgain, they did not consider spatial correlation, which is
domain-size distribution. The classical theoretical treatmenanother very important structural measure for any kind of
of the dynamics of a nucleation and growth system is basedomain growth or ordering. In the two-dimensional case, the
on the growth of nuclei that are larger than a certain “critical grain autocorrelation function was estimated by Monte Carlo
size” [6—8]. Experimental results on nucleation and growthsimulation. Scaling was found far—0 and it is no longer
in mixtures of low-molecular-weight compounfi&], colloi-  exact in the late stages of growth. Finally, Axe and Yamada
dal suspension$10], and polymer blend$11,12 are in  extended the scaling assumption and suggested using it for
gualitative disagreement with classical theory. Recently, aliffraction studies. Unfortunately, they did not present any
phase-field model and simulation of kinetics of polymor-experimental data. Actually, to our knowledge, no experi-
phous crystallization of an amorphous solid have been promental data of this kind have been published until now.
posed, which consider the coupling of a nonconserved local In this work we choose polymer as a model system to
lattice structure and a conserved local atomic compositiostudy nucleation and growth. There are several advantages to
[13]. studying nucleation-growth phenomena during the post-
The kinetic studies of first-order phase transitions havelucleation stage using semicrystalline polymer films. Poly-
been devoted to the characterization and evaluation of correneric materials look more complicated at first sight than
lation functions and their relationship with time-dependentsmall molecular materials; however, for polymeric systems
diffraction studies. The time-dependent spatial correlatiormany collective length scales are very large and hence a
and structure factor have been extensively used in studyinghenomenologicalquasiuniversaldescription is much more
the phase ordering kineti¢8]. Sekimoto[14] evaluated an appropriate. With respect to kinetic phenomena at first-order
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phase transitions, the characteristic time scale of relaxatiofyy, of the system simultaneously. The order param$(&b
and diffusion of polymeric macromolecules is much slowerand a number densitv o erat@r(;() are defined as
than for small molecular materials. Due to this slow dynam- y op

ics of polymer crystallization, deeper quench or larger super-
cooling AT=T,,—T.>1~10 °C) is needed for normal
nucleation and growth, so the small thermal fluctuations have -
less effect on the system. The nucleation and growth of poly ()
meric materials is interface kinetics controlled and growth

(~10"3-10 um/sec) is much slower than in diffusion con- 1 if xethe droplet domain

trolled systems, so higher resolution in time and space canbe = . . )
easily achieved. In addition, the nucleation rate, linear 0 if xethe rest space outside droplet domains,
growth velocity, and geometrical shape of domain growth

(polymer spherulitgsare easily characterizéd?]. Also, ex- )

perimental observation shows that spherulitic domains grow
independently of each other and there is neither Ostwald rip-
ening nor elastic long-range interactions during the nucle-
ation and growth process. The above features of the post- <1>(x)=<
nucleation and growth of polymer spherulitic domains
simplify the experimental measurements and theoretical
analysis.

The pattern evolution and spatiotemporal dynamics are
conducted with the domain-spatial correlation function
G(r,t), which was discussed briefly in previous studi&8].
In this paper we present the general definition of the domain
spatial correlation function for stochastic droplet systems ang s
an interpretation for typical liquidlike and solidlike structures em can be treated as the combination of two groups of ele-

in physics systems. The application of the domain-spatia‘ne_nts; the drop_let doma'ns. _and the qlom_aln—core-center
correlation function and an extensive analysis on simultaPONts: By adopting the definition of partial time-space cor-

neous nucleation, continuous nucleation, multiple nucleationr.elatlon function[19], we obtain then-point partial correla-

and growth processes have been reported with experimentE\‘Pn function
data. We also develop a method using the time-resolved digi-

tal imaging analysis to investigate domain growth. The ex-

> 5(i—ii>>, ?)

wherex is the position vector, angular brackets denote the

average over the ensemble, ab‘(&) is the Diracé function.
To define the domain-spatial correlation function, the sys-

. . . n-1
perimental results have been obtained for nucleation growth 1 sndx|  GMEM )
in semicrystalline polymer films. R ' '

The organization of this paper is as follows. In Sec. Il we
present the general definition of the domain-spatial correla-
tion function (DSCH for stochastic droplet systems. In Sec. - n

. dM(xM 1)

[l we develop an algorithm and software to compute the _ ' H (//(;( 1) 3)
DSCF. We present the evaluation of a static domain-spatial n . K=1 ko '
correlation function and an interpretation for typical liquid- kHl DD(xy 1)

like and solidlike structures in physics systems. In Sec. IV

we propose a theoretical model of nucleation and growth in

terms of a dynamic domain-spatial correlation function. In

Sec. V the application of the domain-spatial correlation funthereG(”)(i(”),t) is the n-point partial correlation function
tion and an extensive analysis on simultaneous nucleatiof the domain-core centers and the domains,
continuous nucleation, muItip[e nuclea_tion, and growth pm,'(l/%)f:/x()?,t)d)? is the domain densityR is the system ge-
cesses have been reported with experimental data. A scalin OG) s th d ical
relation is defined and evaluated using experimental data. e”Y measgre, (x Lt) 'S_ the gran .canon_lca
The experimental findings and conclusions are summarize@-particle density, and(x(" 1) is the one-point particle
in Sec. VI. density. The termd®™(x™ t)/TI}_,®M(x,,t) gives the
joint probability density to find a droplet at position
(Xq,Xz,... Xy) at timest. The termlI{_, (X, t) is the prob-
ability of finding one of the pointy,x,,... Xy inside any
droplet domain at the respective timigst,,... ty.

Definition of the domain-spatial correlation function Let us denoteP ([P ],t) as the time-dependent probabil-

ity distribution of the field @ and Py(r—3 X«

Consider a droplet domain patterfd(X;,Xs,... Xy), L . o
wherex: is the position vector for poiritwithin Q. In order ~.tir,dr,7,d7) as the probability that all of the positions

to fully describe the structure of the droplet domain patternX1:Xz,--- X at the respective times, t,....t, may appear
we introduce a domain-spatial correlation function to probeln the regionrdr during the time interval[ 7,7+dr].
the geometric domain-size distribution and spatial correlaG™(x("™,t) can be expressed as follows:

Il. DOMAIN-SPATIAL CORRELATION FUNCTION
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—(n=1)

(”)(r,t)z{;—% J P(x,t)dx

><<f D[(I)]PS([(P],t)k];[l q)(r—|>?k—§j|,t)1'r[ H Pd(r— > XX

Jik#j

,t;l‘,dr,T,dT)>, (4)

=

whereD[ ] is a differential operator. Alternatively, the static N 1
two-point domain-spatial correlation function can be ex- G(r)— Z o(r—rij)H(R—r) ) =—H(R-r).
pressed according to Eqg4)—(3) as L] P 11)

1 IR By L
G(r)=(§ f lﬂ(X)dX) <2 J 5(r—|Xk—X|)¢(X)dX>- (i) For a polydisperse droplet pattern with size distribu-
k 5 tion f(R), which is the probability of a domain having a size
®) betweenR and R+dR, we define the size distribution as
f(R)=N"19N(R)/JR, whereN(R) is the number of do-

_The domain-spatial correlation function for the two- mains with sizes equal to or larger thRn In this case, Eq.
dlmensmnal cas&;(r), for an arbitrarily chosen domain (7) reduces to

with xI as the origin of the domain core center, is defined by
counting the domains whose position vectors lie within a

N N
distancedr from a circle of radius with center at the origin 1 1
at timet, which yields G(r)= ;< 2 J 6(R]-—r)dr> = ;< 2 H(Rj_r)>

1 N(R>r)

=3 f [1-f(R)]dR, (12)

G r)—}fér—|>?-—>?|) X)dx (6)
|( _p ( i l,b( ’

wherep=(1/A) [ #(x)dx is the domain density; is the po-  whereN(R=r) is the number of domains with sizes equal to
sition vector of the core center of the domain, ahds the  or larger tharr. Therefore G(r) represents the domain-size
total area for the two-dimensional case. distribution function whemr <Ry, 4.

Considering the whole system with the total number of (b) When r>R,,, for an arbitrarily chosen domain

domainsN, the domain-spatial correlation functi€®(r) is | ith % as the origin of the domain core center an,d
(|

the ensemble average of this number for all core-center po_ domainj with radius R;, G,(r) of Eq. (3) can be ex-
sitions of over all domains placed at the origin: I

pressed as
G(r)= <E J (r=[x—x)g(x)dx ) . (7 Gi(r)=(8(r =[x =X (X))
2\ R —(r—r;j)2dr
For droplet patterns, in which domains are isolated from =\ &(r—rj) ST dr

each other, the static domain-spatial correlation function has

the following properties. «/Rjz—(r—rij)z
(@ Whenr <Ry, andR ., is the maximum domain size, =\ o(r—ryy) ———/. (13
for any of the domaing, with sizeR;, j=1,2,....,N, and

rj=Ix—xl=r, we get

r

The domain-spatial correlation function foeR,,., [EQ.
(7)] becomes

lﬂ()?j):j5(Rj—r)dr=H(Rj—r), (8)

13 RP—(r—r;))?
S(r— %~ %)= 8(r—rj)=1, ) G(”_,3<i,,-_%¢,- or=rij) —— - (19

whereH(R; —r) is the Heaviside step function The term of (1p)2 (r —ry;) is actually the pair correlation

function of the domain-core centers. The term

H(R-—r):|1 ff Rj—r<0 (10) \/Rjz—(r—rij)zlwr has a maximum value when-r;;=0
) 0 if R—r>0. Therefore G(r) represents the spatial correlation function of

domains and the peak positions are the same as those of the
(i) For a monodisperséequal-siz¢ droplet pattern with  pair correlation function of the domain-core centers when
radiusR andr <R, Eq. (7) reduces to > Rpax-
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[ll. EVALUATION OF STATIC DOMAIN-SPATIAL
CORRELATION FUNCTION

The above discussion clearly conveys the physical mean-
ing and properties of the domain-spatial correlation function.
The domain-spatial correlation function simultaneously
probes the domain-geometric distribution and the domain-
spatial distribution. In order to characterize the experimental
data and elucidate the governing scaling relations, the
domain-spatial correlation function based on E).can be
calculated for the total domain-spatial space used in the im-
age analysis:

Domain-spatial correlation function, G(r)
O = N W b OO N 0 ©

Distance r ( pixels )

1/ e
G(N="{ 2 | ar=lx—xhu(x)dx
I

1 N Np R FIG. 1. Domain-spatial correlation function for equal-size par-

=-— 2 E o(r—=rip)(x;) |, (15 ticles, where the spatial distributions is a liquidlike state. The flat

PA T part and the sharp drop in intensity close to the left corner of the

. . . figure reflects the equal-size distribution of the particles. In the
wherer is the radius of the shell whose center is th‘i COr€patial correlation part, there is a broad first peak, a smooth second
center of an arbitrary growth domain as an origin,zlxi peak, and a third peak with an appreciably diminished intensity,
_;(]_|, ;(i is the position vector of the core center of the confirming the complete absence of the long-range order corre-

growth domain,;(j is the pixel position vector within the sponding to a liquidiike state.

growth domain,N is the number of the growth domains in

o Figure 3 shows typical results from an experiment involv-
the test ared, and the density is g yb b

ing simultaneous nucleation. It shows growth domains with
1 1 Mo equal sizes and some local impingement structures with
_ - NI~ z some different-size domains. The DSCF gives a flat (yart
P=A f Y dx= Np ; vix)), (16 gion 1), which represents the equal-size domains, and the
smooth curve(region 2 indicates the domain-size distribu-
whereN,, is the total pixel number in the test aréa tion for the local impingement structures. The right-hand
Based on Eqs(15) and(16), we developed image analy- side of Fig. 3 represents the pair correlation function of the
sis software for computing the time-dependent DSCF didomain-core centers. It approaches one in an oscillatory
rectly from experimental images. For the experimental casgnanner, with increasing distance.
the input data are the digitalized coordinates of the core cen- Figure 4 shows typical results from an experiment of con-
ters of the growth domains and the binary images. The re-

sults are based on multiple image sampling and the correc-__ 15
tion of edge effects. Multiple sampling and the correction of & ]g &
edge effects are standard statistical technique used in sto-g 4oL
chastic geometry2] in order to avoid statistical bias. B o1t
In order to evaluate this correlation function, we gener- 2 101
ated images with hypothetical equal-size particles where the g Z |
spatial distributions are a liquidlike state pattésee the in- % 7t
set in Fig. ) or a solidlike state patter(see the insetin Fig. g &}
2). The characteristic features of the DSCF in Fig. 1area® 57
broad first peak, a smooth second peak, and a third peak With§ ‘3‘ [
an appreciably diminished intensity, conﬂrmmg the com'pIeFe £ 2l ﬂ fﬂ%
absence of the long-range order, corresponding to a liquid- £ 1 & ,gﬁé s Z?%% S
like state. The flat part and the sharp drop in intensity close @ 0 | Bt ——grmmen

to the left corner of Fig. 1 reflect the equal-size distribution 0 20 40 60 80 100 120 140 160 180 200

of the particles. Figure 2 shows a DSCF that has pronounced Distance r ( pixels )
peaks at positions Co.rreSpondmg o a hexagonal—clqse— FIG. 2. Domain-spatial correlation function for equal-size par-
packed crystal. A considerably sharper and narrower fwsg

A L cles where the spatial distribution is a solidlike state. The flat part
peak compared to the liquidlike states, a split in the secon nd the sharp drop in intensity close to the left corner of the figure

peak, and the presence of a distinct third peak in Fig. 2 argufiects the equal-size distribution of the particles. In the spatial

the characteristic features of the solid state. Also, the perigorrelation part, there are pronounced peaks at positions corre-
odic distance in peak positions confirms the long-range orsponding to a hexagonal-close-packed crystal. A considerably
der. The flat part and the sharp drop in intensity close to thgharper and narrower first peak compared to the liquidlike states, a
left corner of Fig. 2 again reflect the equal-size distributionsplit in the second peak, and the presence of a distinct third peak are
of the particles. The computed results and the features of thae characteristic features of a solid state. Also, the periodic dis-

DSCF curves agree with E@L1). tance in peak positions confirms the long-range order.
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1 if xethe spherulitic domain at time

w&,t):[

0 if xethe melt at timet.

17

Sekimoto indicated tha,t/(i,t) is connected with the volume
fraction of the stable crystallized phagét) in KIMA's for-
mula[5], which readg14]

! 2 exp{—Jtdt I(t)\If(t)}
0

(p(XD)=1—x(t)= for V(t) and I(t)
exp(—1C4VadtY)

for constantV and I,

FIG. 3. Typical static domain-spatial correlation function from (18
an experimental imageésee the insg¢tof a simultaneous nucleation
case. It shows the growth of domains with equal sizes and som&here d is the spatial dimensionalityC,;=1, C,=Cj
local impingement structures with some different-size domains. The= 7/3, | is the nucleation ratey is the growth velocity, and
DSCF gives a flat partregion 1), which represents the equal-size W (t) is the volume of thal-dimensional unit hypersphere.
domains, and the smooth cur@region 2 indicates the domain-size According to Eq.(5), the domain-spatial correlation func-
distribution for the local impingement structures. The right parttion can be expressed as
represents the pair correlation function of the domain-core centers.

Correlation function, G(r)

-
O =2 N W h OO N O O —
I

Distance r ( pixels )

It approaches one in an oscillatory manner with increasing distance. 1—x(t)]? N . o . s
Gry=—%5—| (X fc?(r—|xi—x|,t)¢//(x,t)dx ,

tinuous nucleation. The first arrow in Fig. 4 indicates the R i=1

maximum domain size and the second arrow indicates the (19

first peak of the pair correlation function. The inset in Fig. 4

shows that there are some isolated growth domains with difVhere2 is the geometric measure of the test region. There-
ferent sizes and some local impingement structures with giffore, the domain-spatial correlation function for nucleation

ferent domain sizes. The slope of the DSCF fezR, ., and growth provides complete information of the trans-

reflects the broadness of the domain-size differences. formed volume fraction, the time-dependent domain-size dis-
tribution function, and the spatial correlation function of

IV. DYNAMIC DOMAIN-SPATIAL CORRELATION domain-core centers simultaneously.

FUNCTION OF NUCLEATION AND GROWTH
. . V. EXPERIMENTAL RESULTS AND DISCUSSION
The order parameter in the nucleation and growth of poly-

mer systems is the spherulitic growth domain, thus Experiments on nucleation and growth in two-
dimensional semicrystalline polymer films during free solidi-
fication were carried out with isotatic polyporpyleeo-
lecular weight M, =250 000. A polymer thin film was
formed between two glass slides while pressing the top slide
to form a 10um-thick polymer film. A Leitz polarizing mi-
croscope, equipped with a Leitz hot stage for polymer film
solidification, was used in the direct observation experi-
ments. In this isothermal solidification study, the temperature
is controlled within =0.1 °C. JAVA-Jandel Scientific's
video measurement and image processing system was di-
rectly connected to the microscope via a charge coupled de-
vice camera. We use commercial software, Visilog 5.02
(from Noesis Vision Inc., Quae0, for basic image process-
ing. We focus on the postnucleation stage, during which the
size of the nuclei is greater thanum and visible under the
Distance r ( pixels ) optical microscope for real-timi situ observation and ac-
FIG. 4. Typical static domain-spatial correlation function from curate real_-space measur(?ments. We present the experimen-
an experimental imagésee the insgtof a continuous nucleation tal resu-lts in terms of the tlme-deper!dent DSCF.-The DSCF
case. The first arrow indicates the maximum domain size and th&(r,t) is plotted as a function of distanae for different
second arrow indicates the first peak of the pair correlation funchucleation cases. The growth velocity under isothermal crys-
tion. The inset image shows that there are some isolated growtillization conditions is constant for semicrystalline poly-
domains with different sizes and some local impingement structureB1ers. Actually, the nucleation rate and growth velocity de-
with different-size domains. The slope of the DSCF fetR., Pend on the system melt properties, thermal history, and
reflects the broadness of the domain-size differences. crystallization conditions. The nucleation in semicrystalline

3.0
2.8
26
24
22
2.0
1.8
16
1.4
1.2
1.0
0.8 | 1 | )

50 100 150 200

Correlation function, G(r)
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FIG. 5. Dynamic domain-spatial correlation function from the

tion temperaturd =129 °C. Inset(a) is the size distribution and

(b) is the spatial correlation.

polymers can be categorized @s simultaneous nucleation,

Distance r (um)

FIG. 7. Dynamic domain-spatial correlation function from the
simultaneous nucleation experiment under isothermal crystallizacontinuous nucleation experiment under isothermal crystallization
temperaturd ;=133 °C. Inseia) is the size distribution an() is

the spatial correlation.

(i) continuous nucleation, an@i) multistep nucleation.

1 _ -1

N
> S(r—rpHR-T)

A BRES
r -1
A. Simultaneous nucleation eXF( _ gl 0V2t3)
Figures 5 and 6 show the time-dependent DSEIF,t) = H(Vt—r). (21)
plotted as a function of the distancdor two sets of typical L A

experimental data involving the simultaneous nucleation
case at two different crystallization temperatures. In both fig-Thus, in the free growth stag€(r,t) is a step function with
ures inset(a) shows the spherulite domain size distributiona width of Vt and the height of5(r,t) decreases with in-
and (b) shows the radial distribution. creasing time. After impingement, there is a mixture of iso-
In the simultaneous nucleation case, polymer crystallizatated spherulitic domains and some impinged grain islands;
tion involves a constant growth velocity. The spatial dis- G(r,t) is a step function representing the equal-size spheru-
tribution of nucleation sites can be of any kind, but timewiselitic domains. It is connected with a smooth oblique curve
it is unigue. The nucleation growth has an instantaneous sitéhat decreases with increasimg representing the domain-
saturation. The nucleation rate is size variation due to impingement.
The experimental results agree with the above analysis
I(t)=loo(t—t)), very well. The major features of the DSCF are ti@gr
=0,t) decrease as time increase, which reflects the increase
wherel, is the constant nuclei density, is the induction in transformed area; far<Rp4(t), the lowerr flat section
time, andd(t—t,) is the Dirac delta function. of the DSCF becomes larger because of the growth of
For r<R(t) and before impingement, the domain-spatialSPherulitic domains; and far>Rp,,,(t), the positions of the

(20

correlation functio Eq. (19) with Eq. (11)] becomes

first peak, the average interdomain center distance, remain

100 1000 000 F 2.5
— a b

= o @150 ®
o 5 tor 1.5
o = 100 ‘
g g 0} 1.0
8 |5
5 = 0.5
g . 1k
e g 10 ' 1 1 1 0.0 1 1 1
g = 0 20 40 60 80 100 100 200 300 400
£ kS| )
5 £ T=135°C
= &)
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O
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Distance r (um)
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Distance r (pm)

1000 1200

FIG. 6. Dynamic domain-spatial correlation function from the  FIG. 8. Dynamic domain-spatial correlation function from the
simultaneous nucleation experiment under isothermal crystallizacontinuous nucleation experiment under isothermal crystallization
tion temperaturdl .=140 °C. Inset(a) is the size distribution and temperaturel.=129 °C. Inse{a) is the size distribution antb) is
(b) is the spatial correlation. the spatial correlation.
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FIG. 9. Dynamic domain-spatial correlation function from the
continuous nucleation experiment under isothermal crystallizatio
temperaturel .= 137 °C and the inset size distribution.

FIG. 11. Dynamic domain-spatial correlation function from a
rIypical multiple nucleation experiment; the inset is the size distri-
bution.

unchanged because there are no new domains formed durifhere ¢, is an induction time. The initial nucleation rate

the domain growth process _in the si_multaneous nucleatiogpoyid be very high, but it soon decays to the linear steady-
caseG(r,t) approaches one in an oscillatory manner at Verygate value. Experimental observations show that the linear
larger, which means that there is no long-range order. Thejeady nucleation rate decreases to zero when impingement
time-dependent DSCI(r,t) smoothly captures the entire pecomes significant with increasing transformation. For
process, including the postnucleation, domain growth, and. Rimat) before impingement, the domain-spatial correla-
grain formation stages. The DSCF directly and simultajgp function (19) becomes

neously explores the transformed volume fraction, the time-
dependent domain-size distribution, and the spatial correla- T -1
tion of domain-core centers throughout the entire process. exr{ - —|V2t3)

;
G(r,t)= N — f [1-f(R,1)]dR.
B. Continuous nucleation ’ (23

Under continuous nucleation, the growth velocWyis . .
constant during polymer isothermal crystallization. The spa- fFlgl:_res 7f"’gPdt8 ShO\fN thtsvtlmeidep;etnd_entl D$IIF_,t) as; |
tiotemporal distributions of nucleation sites are of varioys? function ot distance for two sets of typical experimenta

types. From experimental measuremd@, a nearly linear data involving the simultaneous nucleation case. I(@eat a

nucleation law is found after an induction period. The nucle-29°™ of the smooth curves of the domain size distribution

ation ratel (t) can be described by Kashchiev's nucleationWhenrsR(t):V.t’ whereR(t) is the domain size an\_i Is .
kinetics[21], which is given as the growth velocity. It represents the growth of domains with

different sizes and some local impingement structures. Inset
)“ (b) is the zoom of the spatial pair correlation function of

@={1+22 (—1" exp{—n"(£
n=1

lo

(22 domain-core centers when>R(t)=Vt. The first peak
slightly shifts to the left with increasing time, which means

G(r,t)

G(r,t)

Correlation Function,
wn
_
<
Correlation Function,

0 5 1 1 1 1 ] 1 1 1 1 1 1 i 1

100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 900
Distance r (pm) Distance r (um)

FIG. 10. Spatial correlation function part of the dynamic  FIG. 12. Spatial correlation function part of the dynamic
domain-spatial correlation function in Fig. @) early stage an¢b) domain-spatial correlation function in Fig. 1(4a) early stage and
late stage. (b) late stage.



7514 TAO HUANG, TOMOHIRO TSUJI, M. R. KAMAL, AND A. D. REY PRE 58

= 1O
S ool % v 1o | —e— t=1200 sec
é . - e t=120 sec. 09 | —o— t=2100 sec
) 0.8 | Om o t=240 sec. - 08} —v— t=3000 sec
= 0T7F v v =300 sec. S 07t —v— t=3900 sec
T 0.
3 06} v =360 sec. \!-_-/ 0.6 L
8 t=600 sec. o
g 05 = 05}
2 ¢ =
g 041 . - 04
=] 03 F N
s Y . S 03
@02} v (@) T=133°C 02 F
g 0.1 | . e 0.1 (a)
00 B 1 ) 1 1 L L 1 w| O|v Y ?O |vv| Ol" -
0.0 0.5 1.0 L5 1.0 k —e— 1=4800 sec
r/ Rg(t) —o— t=6600 sec
09 —v— t=8400 sec
_LOF ° o, = —— t=15600 sec
= o L
S 09t . s =08}
I 5 t=1,800 sec. S
F 08 [ o t=3,600 sec. = 07}
/3” 07l . v 1=7,200 sec. :':
S =
5 o6k v t=10,800 sec. 3 06}
g 05 F v 0.5 F
g 04r . o . ' . (b)
5 03 '
= ozl ‘e 0.0 0.5 1.0 1.5 2.0
s Vv =135°
5 01 . (b) T=135°C r/Ry(t)
“ 00| , 3 v e o e ) . .
00 At s —_ o — s FIG. 14. Experimental results of the scaled correlation function

G(r,t)/G(r=04) as a function of /Ry(t) in an isothermal experi-
ment, atT,=133 °C. (a) Growth and impingement with a trans-
formed fraction less than 0.5; the scaling relations are partially
obeyed.(b) Growth and impingement with a transformed fraction
greater than 0.5; the scaling relations break down in the late stages
of growth.

r/Rg(t)

FIG. 13. Experimental results of the scaling relation
G(r,t)/G(r=0t) as a function ofr/Ry(t) from the continuous
nucleation experiment at isothermal temperatyesT=133 °C
and(b) Tc=133 °C, respectively.

&ig. 10. These plots show that the average core distances, the
first peak positions, decrease with time. Figure 11 shows
clear changes in the slopes of the domain-size distribution

that the average internuclei distances decrease with tim
However, the peak stops shifting in later stagéér,t) ap-
proaches one in an oscillatory manner at very largehich . B
means that there is no long-range order. (see the inset in Fig. 11 o

Figure 9 shows more distinctively the same DSCF fea- For early free growth stage, the size distribution can be
tures in another isothermal experimentTat=137 °C. The expressed as
inset in Fig. 9 shows the smooth curves of domain-size dis-

tributions. Figure 1() shows the spatial pair correlation (R _L1ONRY [t (R)—t] (25)
function of domain-core centers as a functionrofat an (RO)= N 9R = (R . '
earlier stage and Fig. 1) shows that at a later stage, cor- fo I[t*(R)—t]dR

responding to Fig. 9. These plots show that the average core

distances, the first peak positions, decrease with time. ) )
wherel[t* (R) —t] is nucleation rate antf (R)=R/V. Then
. . we find that the slope o6(r,t) is related to the nucleation
C. Multiple nucleation rate whenr <R, 4, s
In multiple nucleation, it is assumed that nucleation oc-
curs by a series of elementary steps. The nucleation rate can aG(r,t) —I[t*(R)—t]

be written as

R
_ -1 * o
dn/dt=Kk,_n,_;—kin, (24) {Al1-x(D]} fol[t (R)—t]JdR

for i=1,2,..., dng/dt=kgny. Whenk;t<1, n=ktP. The R —
small step changes in crystallization temperature will N(t)
strongly affect the nucleation rate; however, the growth ve-

locity does not exhibit significant changes. Figure 11 showsAccording to Eq.(26), a slope change in the DSCF indicates
the experimental results of the DSCF for multiple step nuclea step change in the nucleation rate. In Figl1815>1, is
ation. Figure 12a) shows the spatial pair correlation function shown as slopes 1, 2, and 3. The smaller the slope on the
of domain-core centers as a functionroft an early stage DSCF, the smaller the nucleation rate and also the broader
and Fig. 12Zb) shows that at a later stage, corresponding tahe domain-size distribution.

I[t* (R)—t]. (26)
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FIG. 15. Experimental results of the scaling correlation function 02 b) T 2135°C
G(r,t)/G(r=0}) as a function of /Ry(t) in an isothermal experi- 0.1} ®) T
ment atT,=135 °C. (a) Growth and impingement with a trans- ! 1 ! !

formed fraction less than 0.5; the scaling relations are partially '1%000 20000 30000 40000 50000 60000
obeyed.(b) Growth and impingement with a transformed fraction
greater than 0.5; the scaling relations break down in the late stages
of growth. FIG. 16. Experimental results of the scaled correlation function
G(r,t)/G(r=0,) as a function of the time of the breakdown of the
D. Scaling relation for free growth scaling during the impingement processita): To= 133 °C andb)

A scaling relation of domain-spatial correlation functions Tc=133 °C, respectively.
may be written in the form that was used for the pair corré-cajing relations are partially obeyed afiml shows the case
lation function in phase separation studi@g—25: for growth and impingement when the transformed fraction

- e is greater than 0.5. The scaling part indicates the percentage
GrH=GONG(r/Ry(1)) for e<r<L, @7 of the unimpinged domain. The scaling relations break down

time, t (second)

wheree is some lower bound on the sizes of any domain in?n the late stages of growth and for grain structures due to

the systemL s the linear size of the system, aRg(t) is the impingement. Figure 16 suggests a linear evolution of the
location of the first minimum ofG(r t) G(bt) is under- scaling function as a function of time, following the break-

stood to be some limiting value @&(r.t) whenr is of order down of the scaling during the impingement process. This

. The scaling functiorg(r/R(t)) is independent of time. relation is supported by all of the experimental results and

: ; . appears to be universal. It could provide an approach for
Figure 13 presents the scaling from the experimental " nterpolation between the impingement stage and grain struc-
sults of the normalized correlation functiorG(r,t)/G(r P ping 9 9

—01) as a function of /Ry(t) for the early free growth stage tures. In addition to the above application, the domain-spatial

for two different crystallization temperaturek,=133 °C correlation function and the direct imaging program are suit-

. I har rize an ic dropl rns an nami
andT.=135 °C. In both cases, experimental results are su"-’1b € to characterize any static droplet patterns and dynamic

: - . a{arocesses in a wide range of scientific fields.
perimposed on one curve and thus confirm the scaling reld-
tion of the correlation functions for the early free growth
during the postnucleation stage. This result for a two-
dimensional system agrees with Axe and Yamafth& ana-
lytical results in a one-dimensional system.

VI. CONCLUSION

We present an approach on postnucleation and domain
growth in term of a domain-spatial correlation function
G(r,t). It probes the patterns and spatiotemporal evolution
of nucleation and growth processes and agrees very well

Figures 14 and 15 show the experimental results of thavith experimental data. The dynamic domain-spatial corre-
scaling correlation functiols(r,t)/G(r=0;) as a function lation function directly and simultaneously explores the
of r/Ry(t): (&) shows the case for growth and impingementtransformed volume fraction, the time-dependent domain-
when the transformed fraction is less than 0.5, where thasize distribution function, and the spatial correlation function

E. Scaling and impingement
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of domain-core centers for the entire process, including théhe first minimum ofG(r,t). It is exact for free growth dur-
postnucleation, domain growth, and grain formation stagesng the postnucleation stage and also suggests a basis for

The scaling relatioi(r/Ry(t))=G(r,t)/G(r =0) has been
found from experimental data, whelRg(t) is the location of

interpolation between the impingement stage and grain struc-
tures.

[1] J. W. Evans, Rev. Mod. Phy85, 1281(1993, and references
therein.

[2] D. Stoyan and W. S. KendalGtochastic Geometry and Its
Applications(Wiley, New York, 1993.

[3] J. D. Gunton, M. San Miguel, and P. Sahni,Rhase Transi-
tions and Critical Phenomenadited by C. Domb and J. L.
Lebowitz (Academic, London, 1983 Vol. 8, p. 267; J. D.
Gunton and M. Drozlntroduction to the Theory of Metastable
and Unstable State&Springer-Verlag, Berlin, 1983

[4] A. J. Bray, Adv. Phys43, 357 (1994.

[5] A. N. Kolmogorov, Bull. Acad. Sci. USSR, Phys. Sér.355

(1937; W. Johnson and R. F. Mehl, Trans. Am. Inst. Min.

Metall. Pet. Eng135 416(1939; M. Avrami, J. Chem. Phys.
7, 1103(1939; 8, 212 (1940; 9, 177(1941).

[6] J. S. Langer, inSolids Far From Equilibrium edited by C.
Godreche (Cambridge University Press, Cambridge, 1989
Chap. 3, p. 297.

[7] J. S. Langer and A. J. Schwartz, Phys. Re\214948(1980.

[8] K. Binder and D. Stauffer, Adv. Phy&5, 343(1976.

[9] S. Krishnamurthi and W. |. Goldburg, Phys. Rev2& 2147
(1980.

[12] N. P. Balsara, Chenchy Lin, and B. Hammouda, Phys. Rev.
Lett. 77, 3847(1996.

[13] B. Morin, K. R. Elder, M. Sutton, and M. Grant, Phys. Rev.
Lett. 75, 2156(1995; B. Morin, Ph.D. thesis, McGill Univer-
sity, 1993(unpublishegl

[14] K. Sekimoto, Phys. Lettl05A, 390(1984; J. Phys. Soc. Jpn.
53, 2425(1984; Physica A137, 96 (1986.

[15] S. Ohta, T. Ohta, and K. Kawasaki, Physica 140, 478
(1987.

[16] J. D. Axe and Y. Yamada, Phys. Rev. 3, 1599(1986.

[17] Tao Huang, A. D. Rey, and M. R. Kamal, Polym#5, 5434
(19949.

[18] Tao Huang, Tomohiro Tsuji, M. R. Kamal, and A. D. Rey,
Phys. Rev. E58, 789(1998.

[19] J. P. Hansen and I. R. McDonal@heory of Simple Liquids
(Academic, New York, 1986

[20] Tao Huang, A. D. Rey, and M. R. Kamal, Macromolecuds
1218(1998.

[21] D. Kashchiev, Surf. Scienci#4, 209 (1969.

[22] R. Toral, A. Chakrabarti, and J. D. Gunton, Phys. Re\38
901 (1989.

[23] T. M. Rogers and R. C. Desai, Phys. Rev3® 11 956(1989.

[10] A. Cumming, P. Wiltzius, F. S. Bates, and J. H. Rosedale[24] K. R. Elder and R. C. Desai, Phys. Rev.4B, 243(1989.

Phys. Rev. A45, 885(1992.
[11] K. Schatzel and B. J. Ackerson, Phys. RevA& 3766(1993.

[25] P. Fratzl, J. L. Lebowitz, O. Penrose, and J. Amar, Phys. Rev.
B 44, 4794(1991).



