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Dynamics of postnucleation and domain growth: Domain-spatial correlation function

Tao Huang, Tomohiro Tsuji, M. R. Kamal, and A. D. Rey
Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada, H3A 2B2

~Received 27 January 1998!

Postnucleation and domain growth have been investigated by direct imaging of real-timein situ observation
in semicrystalline polymer films. The pattern evolution and spatiotemporal dynamics are conducted with the
domain-spatial correlation functionG(r ,t), which we reported briefly in a previous study@Phys. Rev. E58,
789 ~1998!#. In this paper we present the general definition of the domain-spatial correlation function for
stochastic droplet systems and an interpretation for typical liquidlike and solidlike structures in physics sys-
tems. The application of the domain-spatial correlation function and an extensive analysis on simultaneous
nucleation, continuous nucleation, multiple nucleation, and growth processes have been reported with experi-
mental data. The domain-spatial correlation function directly yields the time-dependent domain-size distribu-
tion function and the spatial correlation function of domain core centers simultaneously throughout the entire
process, including the postnucleation, domain growth, and grain formation stages. The scaling relation
G„r /Rg(t)…5G(r ,t)/G(r 50,t), whereRg(t) is the location of the first minimum ofG(r ,t), has been defined
and evaluated from experimental data. It is exact for free growth during the postnucleation stage and it also
provides a basis for the interpolation between the impingement stage and grain structures. Furthermore, we
indicate that the domain-spatial correlation function and the direct imaging program are useful tools and
suitable to characterize any static droplet patterns and dynamic processes in a wide range of scientific fields.
@S1063-651X~98!09311-8#

PACS number~s!: 64.60.Qb, 64.70.Dv, 68.55.2a, 81.30.2t
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I. INTRODUCTION

The domain growth and evolution of spatial structur
have long received attention in various fields of scien
@1,2#. The domain growth associated with first-order no
equilibrium phase transformations occurs by spinodal
composition or nucleation and growth@3,4#. Reasonable
agreement between scattering experiments and theory
phase separation and ordering has been achieved for m
different materials. In contrast, there are many unsol
problems in nucleation growth. Although Kolmogoro
Johnson, Mehl, and Avrami’s~KJMA’s! @5# theory of nucle-
ation and growth predicts the time dependence for the
acted fraction, it does not provide any information on t
domain-size distribution. The classical theoretical treatm
of the dynamics of a nucleation and growth system is ba
on the growth of nuclei that are larger than a certain ‘‘critic
size’’ @6–8#. Experimental results on nucleation and grow
in mixtures of low-molecular-weight compounds@9#, colloi-
dal suspensions@10#, and polymer blends@11,12# are in
qualitative disagreement with classical theory. Recently
phase-field model and simulation of kinetics of polymo
phous crystallization of an amorphous solid have been p
posed, which consider the coupling of a nonconserved lo
lattice structure and a conserved local atomic composi
@13#.

The kinetic studies of first-order phase transitions ha
been devoted to the characterization and evaluation of co
lation functions and their relationship with time-depende
diffraction studies. The time-dependent spatial correlat
and structure factor have been extensively used in stud
the phase ordering kinetics@3#. Sekimoto@14# evaluated an
PRE 581063-651X/98/58~6!/7507~10!/$15.00
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exact expression of the two-point correlation functions, p
vided the domain-size distribution is known, which is al
related to the crystallized fraction. Inn dimensions, it was
deduced by Ohtaet al. @15# under certain restrictions. Th
evaluation of the correlation functions in this system h
usually been performed by means of the time-core meth
Axe and Yamada@16# obtained an expression of the gra
autocorrelation function in the case of a one-dimensio
system and constant nucleation rate and growth velo
based on Kolmogorov’s model. In this case, the univer
domain-size distribution is obtained fort→0. However, due
to the lack of isotropy of the one-dimensional case, the
sults obtained cannot be generalized to higher dimensi
Again, they did not consider spatial correlation, which
another very important structural measure for any kind
domain growth or ordering. In the two-dimensional case,
grain autocorrelation function was estimated by Monte Ca
simulation. Scaling was found fort→0 and it is no longer
exact in the late stages of growth. Finally, Axe and Yama
extended the scaling assumption and suggested using i
diffraction studies. Unfortunately, they did not present a
experimental data. Actually, to our knowledge, no expe
mental data of this kind have been published until now.

In this work we choose polymer as a model system
study nucleation and growth. There are several advantag
studying nucleation-growth phenomena during the po
nucleation stage using semicrystalline polymer films. Po
meric materials look more complicated at first sight th
small molecular materials; however, for polymeric syste
many collective length scales are very large and henc
phenomenological~quasiuniversal! description is much more
appropriate. With respect to kinetic phenomena at first-or
7507 © 1998 The American Physical Society
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phase transitions, the characteristic time scale of relaxa
and diffusion of polymeric macromolecules is much slow
than for small molecular materials. Due to this slow dyna
ics of polymer crystallization, deeper quench or larger sup
cooling (DT5Tm2Tc@1;10 °C) is needed for norma
nucleation and growth, so the small thermal fluctuations h
less effect on the system. The nucleation and growth of p
meric materials is interface kinetics controlled and grow
(;1023– 10 mm/sec) is much slower than in diffusion con
trolled systems, so higher resolution in time and space ca
easily achieved. In addition, the nucleation rate, line
growth velocity, and geometrical shape of domain grow
~polymer spherulites! are easily characterized@17#. Also, ex-
perimental observation shows that spherulitic domains g
independently of each other and there is neither Ostwald
ening nor elastic long-range interactions during the nuc
ation and growth process. The above features of the p
nucleation and growth of polymer spherulitic domai
simplify the experimental measurements and theoret
analysis.

The pattern evolution and spatiotemporal dynamics
conducted with the domain-spatial correlation functi
G(r ,t), which was discussed briefly in previous studies@18#.
In this paper we present the general definition of the dom
spatial correlation function for stochastic droplet systems
an interpretation for typical liquidlike and solidlike structur
in physics systems. The application of the domain-spa
correlation function and an extensive analysis on simu
neous nucleation, continuous nucleation, multiple nucleat
and growth processes have been reported with experime
data. We also develop a method using the time-resolved d
tal imaging analysis to investigate domain growth. The
perimental results have been obtained for nucleation gro
in semicrystalline polymer films.

The organization of this paper is as follows. In Sec. II w
present the general definition of the domain-spatial corr
tion function ~DSCF! for stochastic droplet systems. In Se
III we develop an algorithm and software to compute t
DSCF. We present the evaluation of a static domain-spa
correlation function and an interpretation for typical liqui
like and solidlike structures in physics systems. In Sec.
we propose a theoretical model of nucleation and growth
terms of a dynamic domain-spatial correlation function.
Sec. V the application of the domain-spatial correlation fu
tion and an extensive analysis on simultaneous nuclea
continuous nucleation, multiple nucleation, and growth p
cesses have been reported with experimental data. A sc
relation is defined and evaluated using experimental d
The experimental findings and conclusions are summar
in Sec. VI.

II. DOMAIN-SPATIAL CORRELATION FUNCTION

Definition of the domain-spatial correlation function

Consider a droplet domain patternV(x¢1 ,x¢2 ,...,x¢N),
wherex¢ i is the position vector for pointi within V. In order
to fully describe the structure of the droplet domain patte
we introduce a domain-spatial correlation function to pro
the geometric domain-size distribution and spatial corre
n
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tion of the system simultaneously. The order parameterc(x¢)
and a number density operatorF(x¢) are defined as

c~x¢!

5H 1 if x¢Pthe droplet domain

0 if x¢Pthe rest space outside droplet domain

~1!

F~x¢!5K (
i 51

n

d~x¢2x¢ i !L , ~2!

wherex¢ is the position vector, angular brackets denote
average over the ensemble, andd(x¢) is the Diracd function.

To define the domain-spatial correlation function, the s
tem can be treated as the combination of two groups of
ments: the droplet domains and the domain–core-ce
points. By adopting the definition of partial time-space co
relation function@19#, we obtain then-point partial correla-
tion function

F 1

R
E c~x¢,t !dx¢Gn21

G~n!~x¢~n!,t !

5K F~n!~x¢~n!,t !

)
k51

n

F~1!~x¢k ,t !

)
k51

n

c~x¢k ,t !L , ~3!

whereG(n)(x¢(n),t) is then-point partial correlation function
of the domain-core centers and the domai
(1/R)*c(x¢,t)dx¢ is the domain density,R is the system ge-
ometry measure,F (n)(x¢(n),t) is the grand canonica
n-particle density, andF (1)(x¢(n),t) is the one-point particle
density. The termF (n)(x¢(n),t)/Pk51

n F (1)(x¢k ,t) gives the
joint probability density to find a droplet at positio
(x¢1 ,x¢2 ,...,x¢N) at timest. The termPk51

n c(x¢k ,t) is the prob-

ability of finding one of the pointsx¢1 ,x¢2 ,...,x¢N inside any
droplet domain at the respective timest1 ,t2 ,...,tN .

Let us denotePs(@F#,t) as the time-dependent probab
ity distribution of the field F and Pd(r 2(k, j ;kÞ j

n ux¢k

2x¢ j u,t;r ,dr,t,dt) as the probability that all of the position
x¢1 ,x¢2 ,...,x¢n at the respective timest1 ,t2 ,...,tn may appear
in the region r dr during the time interval@t,t1dt#.
G(n)(x¢(n),t) can be expressed as follows:
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G~n!~r ,t !5F 1

R
E c~x¢,t !dx¢G2~n21!

3K E D@F#Ps~@F#,t !)
k51

n

F~r 2ux¢k2x¢ j u,t !)
r

)
t

PdS r 2 (
k, j ;kÞ j

n Ux¢k2x¢ jU,t;r ,dr,t,dt D L , ~4!
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whereD@ # is a differential operator. Alternatively, the stat
two-point domain-spatial correlation function can be e
pressed according to Eqs.~1!–~3! as

G~r !5S 1

R
E c~x¢!dx¢D 21K (

k

N E d~r 2ux¢k2x¢u!c~x¢!dx¢L .

~5!

The domain-spatial correlation function for the tw
dimensional caseGi(r ), for an arbitrarily chosen domaini
with x¢ i as the origin of the domain core center, is defined
counting the domains whose position vectors lie within
distancedr from a circle of radiusr with center at the origin
at time t, which yields

Gi~r !5
1

r E d~r 2ux¢ i2x¢u!c~x¢!dx¢, ~6!

wherer5(1/A)*c(x¢)dx¢ is the domain density,x¢ i is the po-
sition vector of the core center of the domain, andA is the
total area for the two-dimensional case.

Considering the whole system with the total number
domainsN, the domain-spatial correlation functionG(r ) is
the ensemble average of this number for all core-center
sitions of over all domains placed at the origin:

G~r !5
1

r K (
i

N E d~r 2ux¢ i2x¢u!c~x¢!dx¢L . ~7!

For droplet patterns, in which domains are isolated fr
each other, the static domain-spatial correlation function
the following properties.

~a! Whenr !Rmax andRmax is the maximum domain size
for any of the domainsj , with sizeRj , j 51,2,. . . .,N, and
r i j 5ux¢ i2x¢ j u5r , we get

c~x¢ j !5E d~Rj2r !dr5H~Rj2r !, ~8!

d~r 2ux¢ i2x¢ j u!5d~r 2r i j ![1, ~9!

whereH(Rj2r ) is the Heaviside step function

H~Rj2r !5H 1 if Rj2r<0

0 if Rj2r .0.
~10!

~i! For a monodisperse~equal-size! droplet pattern with
radiusR and r<R, Eq. ~7! reduces to
-

y

f

o-

s

G~r !5
1

r K (
i , j ; iÞ j

N

d~r 2r i j !H~R2r !L 5
1

r
H~R2r !.

~11!

~ii ! For a polydisperse droplet pattern with size distrib
tion f (R), which is the probability of a domain having a siz
betweenR and R1dR, we define the size distribution a
f (R)5N21]N(R)/]R, where N(R) is the number of do-
mains with sizes equal to or larger thanR. In this case, Eq.
~7! reduces to

G~r !5
1

r K (
j

N E d~Rj2r !drL 5
1

r K (
j

N

H~Rj2r !L
5

1

r

N~R>r !

N
5

1

r E
0

r

@12 f ~R!#dR, ~12!

whereN(R>r ) is the number of domains with sizes equal
or larger thanr . Therefore,G(r ) represents the domain-siz
distribution function whenr ,Rmax.

~b! When r @Rmax, for an arbitrarily chosen domaini
with x¢ i as the origin of the domain core center andx¢ j
Pdomain j with radius Rj , Gi(r ) of Eq. ~3! can be ex-
pressed as

Gi~r !5^d~r 2ux¢ i2x¢ j u!c~x¢ j !&

5K d~r 2r i j !
2ARj

22~r 2r i j !
2dr

2pr dr L
5K d~r 2r i j !

ARj
22~r 2r i j !

2

pr L . ~13!

The domain-spatial correlation function forr @Rmax @Eq.
~7!# becomes

G~r !5
1

r K (
i , j 51;iÞ j

N

d~r 2r i j !
ARj

22~r 2r i j !
2

pr L . ~14!

The term of (1/r)(d(r 2r i j ) is actually the pair correlation
function of the domain-core centers. The ter
ARj

22(r 2r i j )
2/pr has a maximum value whenr 2r i j 50.

Therefore,G(r ) represents the spatial correlation function
domains and the peak positions are the same as those o
pair correlation function of the domain-core centers wher
@Rmax.
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III. EVALUATION OF STATIC DOMAIN-SPATIAL
CORRELATION FUNCTION

The above discussion clearly conveys the physical me
ing and properties of the domain-spatial correlation functi
The domain-spatial correlation function simultaneou
probes the domain-geometric distribution and the doma
spatial distribution. In order to characterize the experimen
data and elucidate the governing scaling relations,
domain-spatial correlation function based on Eq.~4! can be
calculated for the total domain-spatial space used in the
age analysis:

G~r !5
1

r K (
i

N E d~r 2ux¢ i2x¢u!c~x¢!dx¢L
>

1

r K (
i

N

(
j

Np

d~r 2r i j !c~x¢ j !L , ~15!

where r is the radius of the shell whose center is the c
center of an arbitrary growth domain as an origin,r i j 5ux¢ i

2x¢ j u, x¢ i is the position vector of the core center of th
growth domain,x¢ j is the pixel position vector within the
growth domain,N is the number of the growth domains
the test areaA, and the densityr is

r5
1

A E c~x¢!dx¢>
1

Np
(

j

Np

c~x¢ j !, ~16!

whereNp is the total pixel number in the test areaA.
Based on Eqs.~15! and ~16!, we developed image analy

sis software for computing the time-dependent DSCF
rectly from experimental images. For the experimental ca
the input data are the digitalized coordinates of the core c
ters of the growth domains and the binary images. The
sults are based on multiple image sampling and the cor
tion of edge effects. Multiple sampling and the correction
edge effects are standard statistical technique used in
chastic geometry@2# in order to avoid statistical bias.

In order to evaluate this correlation function, we gen
ated images with hypothetical equal-size particles where
spatial distributions are a liquidlike state pattern~see the in-
set in Fig. 1! or a solidlike state pattern~see the inset in Fig
2!. The characteristic features of the DSCF in Fig. 1 ar
broad first peak, a smooth second peak, and a third peak
an appreciably diminished intensity, confirming the compl
absence of the long-range order, corresponding to a liq
like state. The flat part and the sharp drop in intensity cl
to the left corner of Fig. 1 reflect the equal-size distributi
of the particles. Figure 2 shows a DSCF that has pronoun
peaks at positions corresponding to a hexagonal-clo
packed crystal. A considerably sharper and narrower
peak compared to the liquidlike states, a split in the sec
peak, and the presence of a distinct third peak in Fig. 2
the characteristic features of the solid state. Also, the p
odic distance in peak positions confirms the long-range
der. The flat part and the sharp drop in intensity close to
left corner of Fig. 2 again reflect the equal-size distributi
of the particles. The computed results and the features o
DSCF curves agree with Eq.~11!.
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Figure 3 shows typical results from an experiment invo
ing simultaneous nucleation. It shows growth domains w
equal sizes and some local impingement structures w
some different-size domains. The DSCF gives a flat part~re-
gion 1!, which represents the equal-size domains, and
smooth curve~region 2! indicates the domain-size distribu
tion for the local impingement structures. The right-ha
side of Fig. 3 represents the pair correlation function of
domain-core centers. It approaches one in an oscilla
manner, with increasing distance.

Figure 4 shows typical results from an experiment of co

FIG. 1. Domain-spatial correlation function for equal-size p
ticles, where the spatial distributions is a liquidlike state. The
part and the sharp drop in intensity close to the left corner of
figure reflects the equal-size distribution of the particles. In
spatial correlation part, there is a broad first peak, a smooth se
peak, and a third peak with an appreciably diminished intens
confirming the complete absence of the long-range order co
sponding to a liquidlike state.

FIG. 2. Domain-spatial correlation function for equal-size p
ticles where the spatial distribution is a solidlike state. The flat p
and the sharp drop in intensity close to the left corner of the fig
reflects the equal-size distribution of the particles. In the spa
correlation part, there are pronounced peaks at positions co
sponding to a hexagonal-close-packed crystal. A considera
sharper and narrower first peak compared to the liquidlike state
split in the second peak, and the presence of a distinct third pea
the characteristic features of a solid state. Also, the periodic
tance in peak positions confirms the long-range order.
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PRE 58 7511DYNAMICS OF POSTNUCLEATION AND DOMAIN . . .
tinuous nucleation. The first arrow in Fig. 4 indicates t
maximum domain size and the second arrow indicates
first peak of the pair correlation function. The inset in Fig
shows that there are some isolated growth domains with
ferent sizes and some local impingement structures with
ferent domain sizes. The slope of the DSCF forr<Rmax
reflects the broadness of the domain-size differences.

IV. DYNAMIC DOMAIN-SPATIAL CORRELATION
FUNCTION OF NUCLEATION AND GROWTH

The order parameter in the nucleation and growth of po
mer systems is the spherulitic growth domain, thus

FIG. 3. Typical static domain-spatial correlation function fro
an experimental image~see the inset! of a simultaneous nucleatio
case. It shows the growth of domains with equal sizes and s
local impingement structures with some different-size domains.
DSCF gives a flat part~region 1!, which represents the equal-siz
domains, and the smooth curve~region 2! indicates the domain-size
distribution for the local impingement structures. The right p
represents the pair correlation function of the domain-core cen
It approaches one in an oscillatory manner with increasing dista

FIG. 4. Typical static domain-spatial correlation function fro
an experimental image~see the inset! of a continuous nucleation
case. The first arrow indicates the maximum domain size and
second arrow indicates the first peak of the pair correlation fu
tion. The inset image shows that there are some isolated gro
domains with different sizes and some local impingement struct
with different-size domains. The slope of the DSCF forr<Rmax

reflects the broadness of the domain-size differences.
e

if-
f-

-

c~x¢,t !5H 1 if x¢Pthe spherulitic domain at timet

0 if x¢Pthe melt at timet.
~17!

Sekimoto indicated thatc(x¢,t) is connected with the volume
fraction of the stable crystallized phasex(t) in KJMA’s for-
mula @5#, which reads@14#

^c~x¢,t !&512x~ t !55
expF2E

0

t

dt I~ t !C~ t !G
for V~ t ! and I ~ t !

exp~2ICdVdtd11!

for constantV and I ,
~18!

where d is the spatial dimensionality,C151, C25C3
5p/3, I is the nucleation rate,V is the growth velocity, and
C(t) is the volume of thed-dimensional unit hypersphere.

According to Eq.~5!, the domain-spatial correlation func
tion can be expressed as

G~r ,t !5F12x~ t !

R
G21K (

i 51

N E d~r 2ux¢ i2x¢u,t !c~x¢,t !dx¢L ,

~19!

whereR is the geometric measure of the test region. The
fore, the domain-spatial correlation function for nucleati
and growth provides complete information of the tran
formed volume fraction, the time-dependent domain-size d
tribution function, and the spatial correlation function
domain-core centers simultaneously.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments on nucleation and growth in tw
dimensional semicrystalline polymer films during free solid
fication were carried out with isotatic polyporpylene~mo-
lecular weight Mh5250 000!. A polymer thin film was
formed between two glass slides while pressing the top s
to form a 10-mm-thick polymer film. A Leitz polarizing mi-
croscope, equipped with a Leitz hot stage for polymer fi
solidification, was used in the direct observation expe
ments. In this isothermal solidification study, the temperat
is controlled within 60.1 °C. JAVA-Jandel Scientific’s
video measurement and image processing system was
rectly connected to the microscope via a charge coupled
vice camera. We use commercial software, Visilog 5.
~from Noesis Vision Inc., Que´bec!, for basic image process
ing. We focus on the postnucleation stage, during which
size of the nuclei is greater than 1mm and visible under the
optical microscope for real-timein situ observation and ac
curate real-space measurements. We present the experi
tal results in terms of the time-dependent DSCF. The DS
G(r ,t) is plotted as a function of distancer for different
nucleation cases. The growth velocity under isothermal cr
tallization conditions is constant for semicrystalline pol
mers. Actually, the nucleation rate and growth velocity d
pend on the system melt properties, thermal history,
crystallization conditions. The nucleation in semicrystalli
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polymers can be categorized as~i! simultaneous nucleation
~ii ! continuous nucleation, and~iii ! multistep nucleation.

A. Simultaneous nucleation

Figures 5 and 6 show the time-dependent DSCFG(r ,t)
plotted as a function of the distancer for two sets of typical
experimental data involving the simultaneous nucleat
case at two different crystallization temperatures. In both
ures inset~a! shows the spherulite domain size distributi
and ~b! shows the radial distribution.

In the simultaneous nucleation case, polymer crystalli
tion involves a constant growth velocityV. The spatial dis-
tribution of nucleation sites can be of any kind, but timew
it is unique. The nucleation growth has an instantaneous
saturation. The nucleation rate is

I ~ t !5I 0d~ t2t I !, ~20!

where I 0 is the constant nuclei density,t I is the induction
time, andd(t2t I) is the Dirac delta function.

For r<R(t) and before impingement, the domain-spat
correlation function@Eq. ~19! with Eq. ~11!# becomes

FIG. 5. Dynamic domain-spatial correlation function from t
simultaneous nucleation experiment under isothermal crystal
tion temperatureTc5129 °C. Inset~a! is the size distribution and
~b! is the spatial correlation.

FIG. 6. Dynamic domain-spatial correlation function from t
simultaneous nucleation experiment under isothermal crystal
tion temperatureTc5140 °C. Inset~a! is the size distribution and
~b! is the spatial correlation.
n
-

-

ite

l

G~r ,t !5F12x~ t !

A G21K (
i , j ; iÞ j

N

d~r 2r i j !H~Rj2r !L
5F expS 2

p

3
I 0V2t3D

A
G21

H~Vt2r !. ~21!

Thus, in the free growth stage,G(r ,t) is a step function with
a width of Vt and the height ofG(r ,t) decreases with in-
creasing time. After impingement, there is a mixture of is
lated spherulitic domains and some impinged grain islan
G(r ,t) is a step function representing the equal-size sphe
litic domains. It is connected with a smooth oblique cur
that decreases with increasingr , representing the domain
size variation due to impingement.

The experimental results agree with the above anal
very well. The major features of the DSCF are thatG(r
50,t) decrease as time increase, which reflects the incre
in transformed area; forr<Rmax(t), the lowerr flat section
of the DSCF becomes larger because of the growth
spherulitic domains; and forr @Rmax(t), the positions of the
first peak, the average interdomain center distance, rem

a-

a-

FIG. 7. Dynamic domain-spatial correlation function from th
continuous nucleation experiment under isothermal crystalliza
temperatureTc5133 °C. Inset~a! is the size distribution and~b! is
the spatial correlation.

FIG. 8. Dynamic domain-spatial correlation function from th
continuous nucleation experiment under isothermal crystalliza
temperatureTc5129 °C. Inset~a! is the size distribution and~b! is
the spatial correlation.
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unchanged because there are no new domains formed d
the domain growth process in the simultaneous nuclea
case.G(r ,t) approaches one in an oscillatory manner at v
large r , which means that there is no long-range order. T
time-dependent DSCFG(r ,t) smoothly captures the entir
process, including the postnucleation, domain growth,
grain formation stages. The DSCF directly and simul
neously explores the transformed volume fraction, the tim
dependent domain-size distribution, and the spatial corr
tion of domain-core centers throughout the entire proces

B. Continuous nucleation

Under continuous nucleation, the growth velocityV is
constant during polymer isothermal crystallization. The s
tiotemporal distributions of nucleation sites are of vario
types. From experimental measurements@20#, a nearly linear
nucleation law is found after an induction period. The nuc
ation rateI (t) can be described by Kashchiev’s nucleati
kinetics @21#, which is given as

I ~ t !

I 0
5H 112(

n51

`

~21!n expF2n2S t

t I
D G J , ~22!

FIG. 9. Dynamic domain-spatial correlation function from t
continuous nucleation experiment under isothermal crystalliza
temperatureTc5137 °C and the inset size distribution.

FIG. 10. Spatial correlation function part of the dynam
domain-spatial correlation function in Fig. 9:~a! early stage and~b!
late stage.
ing
n

y
e

d
-
-

a-

-
s

-

where t I is an induction time. The initial nucleation rat
should be very high, but it soon decays to the linear stea
state value. Experimental observations show that the lin
steady nucleation rate decreases to zero when impingem
becomes significant with increasing transformation. For
<Rmax(t) before impingement, the domain-spatial corre
tion function ~19! becomes

G~r ,t !5F expS 2
p

3
IV2t3D

A
G21

E
0

r

@12 f ~R,t !#dR.

~23!

Figures 7 and 8 show the time-dependent DSCFG(r ,t) as
a function of distancer for two sets of typical experimenta
data involving the simultaneous nucleation case. Inset~a! is a
zoom of the smooth curves of the domain size distribut
when r<R(t)5Vt, whereR(t) is the domain size andV is
the growth velocity. It represents the growth of domains w
different sizes and some local impingement structures. In
~b! is the zoom of the spatial pair correlation function
domain-core centers whenr .R(t)5Vt. The first peak
slightly shifts to the left with increasing time, which mean

n
FIG. 11. Dynamic domain-spatial correlation function from

typical multiple nucleation experiment; the inset is the size dis
bution.

FIG. 12. Spatial correlation function part of the dynam
domain-spatial correlation function in Fig. 11:~a! early stage and
~b! late stage.
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that the average internuclei distances decrease with t
However, the peak stops shifting in later stages.G(r ,t) ap-
proaches one in an oscillatory manner at very larger , which
means that there is no long-range order.

Figure 9 shows more distinctively the same DSCF f
tures in another isothermal experiment atTc5137 °C. The
inset in Fig. 9 shows the smooth curves of domain-size
tributions. Figure 10~a! shows the spatial pair correlatio
function of domain-core centers as a function ofr at an
earlier stage and Fig. 10~b! shows that at a later stage, co
responding to Fig. 9. These plots show that the average
distances, the first peak positions, decrease with time.

C. Multiple nucleation

In multiple nucleation, it is assumed that nucleation o
curs by a series of elementary steps. The nucleation rate
be written as

dn/dt5ki 21ni 212kini ~24!

for i 51,2,. . . , dn0 /dt5k0n0 . When ki t!1, n5ktp. The
small step changes in crystallization temperature w
strongly affect the nucleation rate; however, the growth
locity does not exhibit significant changes. Figure 11 sho
the experimental results of the DSCF for multiple step nuc
ation. Figure 12~a! shows the spatial pair correlation functio
of domain-core centers as a function ofr at an early stage
and Fig. 12~b! shows that at a later stage, corresponding

FIG. 13. Experimental results of the scaling relati
G(r ,t)/G(r 50,t) as a function ofr /Rg(t) from the continuous
nucleation experiment at isothermal temperatures~a! TC5133 °C
and ~b! TC5133 °C, respectively.
e.

-

s-

re

-
an

ll
-
s
-

o

Fig. 10. These plots show that the average core distances
first peak positions, decrease with time. Figure 11 sho
clear changes in the slopes of the domain-size distribu
~see the inset in Fig. 11!.

For early free growth stage, the size distribution can
expressed as

f ~R,t !5
1

N

]N~R,t !

]R
5

I @ t* ~R!2t#

E
0

R

I @ t* ~R!2t#dR

, ~25!

whereI @ t* (R)2t# is nucleation rate andt* (R)5R/V. Then
we find that the slope ofG(r ,t) is related to the nucleation
rate whenr !Rmax as

]G~r ,t !

]r
5

2I @ t* ~R!2t#

$A@12x~ t !#%21E
0

R

I @ t* ~R!2t#dR

5
21

N~ t !
I @ t* ~R!2t#. ~26!

According to Eq.~26!, a slope change in the DSCF indicat
a step change in the nucleation rate. In Fig. 10I 1.I 3.I 2 is
shown as slopes 1, 2, and 3. The smaller the slope on
DSCF, the smaller the nucleation rate and also the broa
the domain-size distribution.

FIG. 14. Experimental results of the scaled correlation funct
G(r ,t)/G(r 50,t) as a function ofr /Rg(t) in an isothermal experi-
ment, atTc5133 °C. ~a! Growth and impingement with a trans
formed fraction less than 0.5; the scaling relations are parti
obeyed.~b! Growth and impingement with a transformed fractio
greater than 0.5; the scaling relations break down in the late st
of growth.
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D. Scaling relation for free growth

A scaling relation of domain-spatial correlation functio
may be written in the form that was used for the pair cor
lation function in phase separation studies@22–25#:

G~r ,t !>G~0,t !G„r /Rg~ t !… for e!r !L, ~27!

wheree is some lower bound on the sizes of any domain
the system,L is the linear size of the system, andRg(t) is the
location of the first minimum ofG(r ,t). G(0,t) is under-
stood to be some limiting value ofG(r ,t) whenr is of order
e. The scaling functionG„r /Rg(t)… is independent of time.

Figure 13 presents the scaling from the experimental
sults of the normalized correlation functionsG(r ,t)/G(r
50,t) as a function ofr /Rg(t) for the early free growth stag
for two different crystallization temperaturesTc5133 °C
andTc5135 °C. In both cases, experimental results are
perimposed on one curve and thus confirm the scaling r
tion of the correlation functions for the early free grow
during the postnucleation stage. This result for a tw
dimensional system agrees with Axe and Yamada’s@16# ana-
lytical results in a one-dimensional system.

E. Scaling and impingement

Figures 14 and 15 show the experimental results of
scaling correlation functionG(r ,t)/G(r 50,t) as a function
of r /Rg(t): ~a! shows the case for growth and impingeme
when the transformed fraction is less than 0.5, where

FIG. 15. Experimental results of the scaling correlation funct
G(r ,t)/G(r 50,t) as a function ofr /Rg(t) in an isothermal experi-
ment atTc5135 °C. ~a! Growth and impingement with a trans
formed fraction less than 0.5; the scaling relations are parti
obeyed.~b! Growth and impingement with a transformed fractio
greater than 0.5; the scaling relations break down in the late st
of growth.
-

-

-
a-

-

e

t
e

scaling relations are partially obeyed and~b! shows the case
for growth and impingement when the transformed fract
is greater than 0.5. The scaling part indicates the percen
of the unimpinged domain. The scaling relations break do
in the late stages of growth and for grain structures due
impingement. Figure 16 suggests a linear evolution of
scaling function as a function of time, following the brea
down of the scaling during the impingement process. T
relation is supported by all of the experimental results a
appears to be universal. It could provide an approach
interpolation between the impingement stage and grain st
tures. In addition to the above application, the domain-spa
correlation function and the direct imaging program are s
able to characterize any static droplet patterns and dyna
processes in a wide range of scientific fields.

VI. CONCLUSION

We present an approach on postnucleation and dom
growth in term of a domain-spatial correlation functio
G(r ,t). It probes the patterns and spatiotemporal evolut
of nucleation and growth processes and agrees very
with experimental data. The dynamic domain-spatial cor
lation function directly and simultaneously explores t
transformed volume fraction, the time-dependent doma
size distribution function, and the spatial correlation functi

y

es

FIG. 16. Experimental results of the scaled correlation funct
G(r ,t)/G(r 50,t) as a function of the time of the breakdown of th
scaling during the impingement processing:~a! TC5133 °C and~b!
TC5133 °C, respectively.
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of domain-core centers for the entire process, including
postnucleation, domain growth, and grain formation stag
The scaling relationG„r /Rg(t)…5G(r ,t)/G(r 50,t) has been
found from experimental data, whereRg(t) is the location of
s

.

e

n.

9

le
e
s.
the first minimum ofG(r ,t). It is exact for free growth dur-
ing the postnucleation stage and also suggests a basi
interpolation between the impingement stage and grain st
tures.
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